Single and cell population respiratory oscillations in yeast: A 2-photon scanning laser microscopy study

Citations of this article
Mendeley users who have this article in their library.


Two-photon scanning laser and confocal microscopies were used to image metabolic dynamics of single or cell populations of Saccharomyces cerevisiae strain 28033. Autofluorescence of reduced nicotinamide nucleotides, and mitochondrial membrane potential (ΔΨm), were simultaneously monitored. Spontaneous, large-scale synchronized oscillations of NAD(P)H and ΔΨm throughout the entire population of yeasts occurred under perfusion with aerated buffer in a continuous single-layered film of organisms. These oscillations stopped in the absence of perfusion and the intracellular NAD(P)H pool became reduced. Individual mitochondria within a single yeast also showed in-phase synchronous responses with the cell population, in both tetramethylrhodamine ethyl ester (or tetramethylrhodamine methyl ester) and autofluorescence. A single, localized, laser flash also triggered mitochondrial oscillations in single cells suggesting that the mitochondrion may behave as an autonomous oscillator. We conclude that spontaneous oscillations of S. cerevisiae mitochondrial redox states and ΔΨm occur within individual yeasts, and synchrony of populations of organisms indicates the operation of an efficient system of cell-cell interaction to produce concerted metabolic multicellular behaviour on the minute time scale in both cases. © 2006 Federation of European Biochemical Societies.




Aon, M. A., Cortassa, S., Lemar, K. M., Hayes, A. J., & Lloyd, D. (2007). Single and cell population respiratory oscillations in yeast: A 2-photon scanning laser microscopy study. FEBS Letters, 581(1), 8–14.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free