Stapled Golgi cisternae remain in place as cargo passes through the stack

  • Lavieu G
  • Zheng H
  • Rothman J
Citations of this article
Mendeley users who have this article in their library.


We have designed a membrane ‘staple’, which consists of membrane-anchored repeats of the trans-aggregating FM domain that face the lumen of the secretory pathway. In the presence of the disaggregating drug these proteins transit the secretory pathway. When the drug is removed these proteins form electron-dense plaques which we term staples. Unexpectedly, when initially positioned within the cis-Golgi, staples remained at the cis face of the Golgi even after many hours. By contrast, soluble FM-aggregates transited the Golgi. Staples and soluble aggregates placed in cis-Golgi cisternae therefore have different fates. Whereas the membrane staples are located in the flattened, stacked central regions of the cisternae, the soluble aggregates are in the dilated rims. This suggests that while the cisternae are static on the time scale of protein traffic, the dilated rims are mobile and progress in the cis → trans direction via a mechanism that we term ‘Rim Progression’.Most plant and animal cells contain an organelle known as the Golgi apparatus, which consists of a series of four to six stacked cisternae. Almost all the proteins that are secreted from the cell, or targeted to its plasma membrane, transit through the Golgi. This process takes roughly 5–20 min.Although transport of proteins through the Golgi was first observed more than 50 years ago, it is still unclear exactly how this process occurs. One possibility is that proteins to be packaged move through the cisternae enclosed in vesicles, as if on a conveyor belt. Alternatively, the proteins themselves may remain stationary while the Golgi cisternae move over them.Now, Lavieu et al. provide evidence that the Golgi shows both mobile and static behaviour depending on the type and size of the cargo being processed. To distinguish between these two mechanisms, they created a new type of protein cargo—which they called a ‘staple’—that became fixed to the walls on each side of the cisternae and could not, therefore, move freely through the Golgi. They compared the processing of this protein to that of a more typical soluble protein cargo, which could move freely through the Golgi stack.Surprisingly, the Golgi processed these two types of cargo in very different ways. The staples remained embedded in the walls in the center of the cisternae, whereas the conventional soluble cargo was transported past the staples and collected at the edges of the cisternae, which are known as rims. These are wider than the center of the cisternae, and the staples are too narrow to span them. Lavieu et al. suggest that the Golgi cisternae can be divided into two functionally distinct domains: the centers of cisternae, which remain stationary, and the edges or rims, which can move.In addition to increasing our understanding of how proteins are prepared for transport inside cells, this new mechanism reconciles seemingly conflicting data by revealing that the Golgi can be both mobile and static.




Lavieu, G., Zheng, H., & Rothman, J. E. (2013). Stapled Golgi cisternae remain in place as cargo passes through the stack. ELife, 2.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free