State Prediction of High-speed Ballistic Vehicles with Gaussian Process

Citations of this article
Mendeley users who have this article in their library.
Get full text


© 2018 Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature This paper proposes a new method of predicting the future state of a ballistic target trajectory. There have been a number of estimation methods that utilize the variations of Kalman filters, and the prediction of the future states followed the simple propagations of the target dynamic equations. However, these simple propagations suffered from no observation of the future state, so this propagation could not estimate a key parameter of the dynamics equation, such as the ballistic coefficient. We resolved this limitation by applying a data-driven approach to predict the ballistic coefficient. From this learning of the ballistic coefficient, we calculated the future state with the future ballistic parameter that differs over time. Our proposed model shows the better performance than the traditional simple propagation method in this state prediction task. The value of this research could be recognized as an application of machine learning techniques to the aerodynamics domains. Our framework suggests how to maximize the synergy by linking the traditional filtering aproaches and diverse machine learning techniques, i.e., Gaussian process regression, support vector regression and regularized linear regression.




Moon, I. C., Song, K., Kim, S. H., & Choi, H. L. (2018). State Prediction of High-speed Ballistic Vehicles with Gaussian Process. International Journal of Control, Automation and Systems, 16(3), 1282–1292.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free