Structural performance of near-optimal sandwich panels with corrugated cores

76Citations
Citations of this article
66Readers
Mendeley users who have this article in their library.

Abstract

An experimental and computational study of the bending response of steel sandwich panels with corrugated cores in both transverse and longitudinal loading orientations has been performed. Panel designs were chosen on the basis of failure mechanism maps, constructed using analytic models for failure initiation. The assessment affirms that the analytic models provide accurate predictions when failure initiation is controlled by yielding. However, discrepancies arise when failure initiation is governed by other mechanisms. One difficulty is related to the sensitivity of the buckling loads to the rotational constraints of the nodes, as well as to fabrication imperfections. The second relates to the compressive stresses beneath the loading platen. To address these deficiencies, existing models for core failure have been expanded. The new results have been validated by experimental measurements and finite element simulations. Limit loads have also been examined and found to be sensitive to the failure mechanism. When face yielding predominates, appreciable hardening follows the initial non-linearity, rendering robustness. Conversely, for designs controlled by buckling (either elastic or plastic) failure initiation is immediately followed by softening. The implication is that, when robustness is a key requirement, designs within the face failure domain are preferred. © 2005 Elsevier Ltd. All rights reserved.

Cite

CITATION STYLE

APA

Valdevit, L., Wei, Z., Mercer, C., Zok, F. W., & Evans, A. G. (2006). Structural performance of near-optimal sandwich panels with corrugated cores. International Journal of Solids and Structures, 43(16), 4888–4905. https://doi.org/10.1016/j.ijsolstr.2005.06.073

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free