Subtractive logic

39Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

This paper is the first part of a work whose purpose is to investigate duality in some related frameworks (cartesian closed categories, lambda-calculi, intuitionistic and classical logics) from syntactic, semantical and computational viewpoints. We start with category theory and we show that any bicartesian closed category with coexponents is degenerated (i.e. there is at most one arrow between two objects). The remainder of the paper is devoted to logical issues. We examine the propositional calculus underlying the type system of bicartesian closed categories with coexponents and we show that this calculus corresponds to subtractive logic: a conservative extension of intuitionistic logic with a new connector (subtraction) dual to implication. Eventually, we consider first-order subtractive logic and we present an embedding of classical logic into subtractive logic. © 2001 Published by Elsevier Science B.V.

Cite

CITATION STYLE

APA

Crolard, T. (2001). Subtractive logic. Theoretical Computer Science, 254(1–2), 151–185. https://doi.org/10.1016/S0304-3975(99)00124-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free