Visualizing spatiotemporal dynamics of multicellular cell-cycle progression

  • Miyawaki A
  • Sakaue-Sawano A
  • Kurokawa H
  • et al.
N/ACitations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The cell-cycle transition from G(1) to S phase has been difficult to visualize. We have harnessed antiphase oscillating proteins that mark cell-cycle transitions in order to develop genetically encoded fluorescent probes for this purpose. These probes effectively label individual G, phase nuclei red and those in S/G(2)/M phases green. We were able to generate cultured cells and transgenic mice constitutively expressing the cell-cycle probes, in which every cell nucleus exhibits either red or green fluorescence. We performed time-lapse imaging to explore the spatiotemporal patterns of cell-cycle dynamics during the epithelial-mesenchymal transition of cultured cells, the migration and differentiation of neural progenitors in brain slices, and the development of tumors across blood vessels in live mice. These mice and cell lines will serve as model systems permitting unprecedented spatial and temporal resolution to help us better understand how the cell cycle is coordinated with various biological events.

Cite

CITATION STYLE

APA

Miyawaki, A., Sakaue-Sawano, A., Kurokawa, H., Morimura, T., Hanyu, A., Hama, H., … Masai, H. (2008). Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell, 132(3), 487–498. https://doi.org/10.1016/j.cell.2007.12.033

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free