Characterization of low-temperature MOCVD Cd1-xMnxTe thin films

Citations of this article
Mendeley users who have this article in their library.
Get full text


New organomanganese sources RMn(CO)5 (e.g. R = CH3 or C6H5CH2) have enabled low-temperature MOCVD of Cd1-xMnxTe (0 < x < 0.8) thin films on GaAs, GaAs Si, InP, sapphire and glass substrates over an area > 50 cm2 in a horizontal reactor at atmospheric pressure. Diluted magnetic Cd1-yMnyTe Cd1-xMnxTe strained layer superlattices have been characterized by SIMS, PIXE, RBS, HRTEM of ultramicrotomed cross-sectional samples, double-crystal XRD rocking curve and satellite analysis and simulation, X-ray topography, WDX/EPMA, optical transmission and FTIR. Local thickness mapping by simultaneous PIXE and RBS, profilometry, SIMS sputter times and FTIR has provided uniformity information required for improved reactor design. Preferential (011) growth on (100) GaAs leads to anisotropic micrograting-like X-ray diffraction at glancing angles. Smoother materials is obtained on (111B), (311A), (311B), and (100) 2° off toward (110) GaAs. © 1991.




Pain, G. N., Warminski, T., Sulcs, S., Kwietniak, M. S., Gao, D., Glanvill, S. R., … West, B. O. (1991). Characterization of low-temperature MOCVD Cd1-xMnxTe thin films. Applied Surface Science, 4849(C), 76–88.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free