Effect of magnetic field on two-layered natural/thermocapillary convection

Citations of this article
Mendeley users who have this article in their library.
Get full text


Heat transfer in a two-layered fluid system is of great importance in a variety of applications. Control and optimization of convective heat transfer of the immiscible fluids needs complete understanding of all phenomena, especially those induced by surface tension at the fluid interface. The present work is focused on rather complex convective flow and heat transfer phenomena in a cavity, which can be subject to both buoyancy and thermocapillary effects in addition to the influence of magnetic field applied for flow control. With the encapsulant liquid posing magnetic properties, a magnetic force can arise to either enhance or counterbalance the gravity effect when the cavity is placed in a non-uniform magnetic field. In our study, the velocity and temperature distribution of the system can be significantly altered to change the heat transfer by varying intensity and gradient of the applied magnetic field. Preliminary results of numerical computation presented here are for a two-layered liquid cavity MnCl2·4H2O and Fluorinert FC40 under various magnetic fields intensities. © 2007.




Ludovisi, D., Cha, S. S., Ramachandran, N., & Worek, W. M. (2007). Effect of magnetic field on two-layered natural/thermocapillary convection. International Communications in Heat and Mass Transfer, 34(5), 523–533. https://doi.org/10.1016/j.icheatmasstransfer.2007.02.003

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free