Exact stiffness matrix of a nonuniform beam-I. Extension, torsion, and bending of a bernoulli-euler beam

  • Friedman Z
  • Kosmatka J
  • 4


    Mendeley users who have this article in their library.
  • 27


    Citations of this article.


The exact axial, bending, and torsion stiffness matrices have been developed for an arbitrary nonuniform beam element. The coefficients of the bending stiffness matrix require the evaluation of three integrals, while the axial and torsion stiffness matrices require only one integral. These coefficients are evaluated for a uniform beam (verification) and a nonuniform beam with either linearly- or parabolically-varying cross-section dimensions. Two sets of numerical results are presented to provide a comparison of the current exact approach with a commonly used displacement-based approach and an approximate approach found in most commercial finite element programs. The two existing approaches produced acceptable results for an extremely small range of tapers. As more elements are used with the two existing approaches, their solutions will converge to the current exact solution which requires only one element. © 1992.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Z. Friedman

  • J. B. Kosmatka

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free