An iterative method with error estimators

12Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Iterative methods for the solution of linear systems of equations produce a sequence of approximate solutions. In many applications it is desirable to be able to compute estimates of the norm of the error in the approximate solutions generated and terminate the iterations when the estimates are sufficiently small. This paper presents a new iterative method based on the Lanczos process for the solution of linear systems of equations with a symmetric matrix. The method is designed to allow the computation of estimates of the Euclidean norm of the error in the computed approximate solutions. These estimates are determined by evaluating certain Gauss, anti-Gauss, or Gauss-Radau quadrature rules. © 2001 Elsevier Science B.V.

Cite

CITATION STYLE

APA

Calvetti, D., Morigi, S., Reichel, L., & Sgallari, F. (2001). An iterative method with error estimators. Journal of Computational and Applied Mathematics, 127(1–2), 93–119. https://doi.org/10.1016/S0377-0427(00)00494-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free