A Monte Carlo simulation comparing hydrocarbons as stopping gases for position sensitive neutron detectors

  • Doumas A
  • Smith G
  • 3


    Mendeley users who have this article in their library.
  • 3


    Citations of this article.


Various neutron detectors are being developed for the next generation user facilities, which incorporate new as well as existing approaches for the detection of thermal neutrons. Improvements in neutron detector efficiency, detector size and position resolution have occurred over the last three decades and further advances are expected in the next ten years. Since gas detectors are expected to continue in a key role for future thermal neutron experiments, it is advantageous to review some of the criteria for the choice of proton/triton stopping gases for gas-based detectors. Monte Carlo simulations, using the group of programs "Stopping and Range of Ions in Matter", have been run to determine key performance characteristics for neutron detectors which utilize the reaction3He(n,p)t. This paper will focus on investigating the use of three common hydrocarbons and CF4as stopping gases for thermal neutron detectors. A discussion of these gases will include their behavior in terms of proton and triton range, ion distribution and straggle. © 2009 Elsevier B.V.

Author-supplied keywords

  • Gas detector
  • Position resolution
  • Proton triton range
  • Thermal neutron

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • A. Doumas

  • G. C. Smith

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free