Perturbation analysis analyzed-mathematical modeling of intact and perturbed gene regulatory circuits for animal development

4Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Gene regulatory networks for animal development are the underlying mechanisms controlling cell fate specification and differentiation. The architecture of gene regulatory circuits determines their information processing properties and their developmental function. It is a major task to derive realistic network models from exceedingly advanced high throughput experimental data. Here we use mathematical modeling to study the dynamics of gene regulatory circuits to advance the ability to infer regulatory connections and logic function from experimental data. This study is guided by experimental methodologies that are commonly used to study gene regulatory networks that control cell fate specification. We study the effect of a perturbation of an input on the level of its downstream genes and compare between the cis-regulatory execution of OR and AND logics. Circuits that initiate gene activation and circuits that lock on the expression of genes are analyzed. The model improves our ability to analyze experimental data and construct from it the network topology. The model also illuminates information processing properties of gene regulatory circuits for animal development. © 2010 Elsevier Inc.

Cite

CITATION STYLE

APA

Ben-Tabou de-Leon, S. (2010). Perturbation analysis analyzed-mathematical modeling of intact and perturbed gene regulatory circuits for animal development. Developmental Biology, 344(2), 1110–1118. https://doi.org/10.1016/j.ydbio.2010.06.020

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free