A reaction-diffusion system of a predator-prey-mutualist model

  • Zheng S
  • 4

    Readers

    Mendeley users who have this article in their library.
  • 9

    Citations

    Citations of this article.

Abstract

Mutualism is part of many significant processes in nature. Mutualistic benefits arising from modification of predator-prey interactions involve interactions of at least three species. In this paper we investigate the Homogeneous Neumann problem and Dirichlet problem for a reaction-diffusion system of three species-a predator, a mutualist-prey, and a mutualist. The existence, uniqueness, and boundedness of the solution are established by means of the comparison principle and the monotonicity method. For the Neumann problem, we analyze the constant equilibrium solutions and their stability. For the Dirichlet problem, we prove the global asymptotic stability of the trivial equilibrium solution. Specifically, we study the existence and the asymptotic behavior of two nonconstant equilibrium solutions. The main method used in studying of the stability is the spectral analysis to the linearized operators. The O.D.E. problem for the same model was proposed and studied in [13]. Through our results, we can see the influences of the diffusion mechanism and the different boundary value conditions upon the asymptotic behavior of the populations. © 1986.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free