A reaction-diffusion system of a predator-prey-mutualist model

9Citations
Citations of this article
4Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Mutualism is part of many significant processes in nature. Mutualistic benefits arising from modification of predator-prey interactions involve interactions of at least three species. In this paper we investigate the Homogeneous Neumann problem and Dirichlet problem for a reaction-diffusion system of three species-a predator, a mutualist-prey, and a mutualist. The existence, uniqueness, and boundedness of the solution are established by means of the comparison principle and the monotonicity method. For the Neumann problem, we analyze the constant equilibrium solutions and their stability. For the Dirichlet problem, we prove the global asymptotic stability of the trivial equilibrium solution. Specifically, we study the existence and the asymptotic behavior of two nonconstant equilibrium solutions. The main method used in studying of the stability is the spectral analysis to the linearized operators. The O.D.E. problem for the same model was proposed and studied in [13]. Through our results, we can see the influences of the diffusion mechanism and the different boundary value conditions upon the asymptotic behavior of the populations. © 1986.

Cite

CITATION STYLE

APA

Zheng, S. (1986). A reaction-diffusion system of a predator-prey-mutualist model. Mathematical Biosciences, 78(2), 217–245. https://doi.org/10.1016/0025-5564(86)90126-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free