Relationships among surfactant fraction lipids, proteins and biophysical properties in the developing rat lung

  • Farrell P
  • Bourbon J
  • Notter R
 et al. 
  • 5

    Readers

    Mendeley users who have this article in their library.
  • 22

    Citations

    Citations of this article.

Abstract

Lung development is associated with increases in specific phospholipids and proteins that function as critical pulmonary surfactant components. Attempts to characterize the pattern of surfactant development in fetal rat lungs have been hampered by the lack of a micromethod which will permit quantitative isolation of surface active components from small tissue specimens. As part of studies designed to elucidate the metabolic regulation of lung development in the rat, we developed sucrose density gradient centrifugation procedures to separate pulmonary phospholipids and proteins into a presumed surfactant (S) fraction and a residual (R) fraction. Electron microscopy of S pellets from mature fetuses identified predominant lamellar bodies and minimal contamination; incubation with 5 mM CaCl2induced the appearance of tubular myelin figures, implying functional potential. This was confirmed by demonstrating low surface tension (< 1 dyn/cm) in S, but not R, fractions at term gestation (21.5 days) and in 1-day-old neonatal lung isolates, based on dynamic measurements using the oscillating bubble technique. Surface activity was also high in the S pellets from fetuses at 20.5 days of gestation; however, at 19.5 days, minimum surface tension values of at least 19 dyne /cm were seen. These results correlated directly with biochemical analyses which indicated striking increases in three surfactant-associated proteins (SP-A, SP-B, and SP-C) after 19.5 days of gestation; a finding in agreement with previously reported data on the developmental increase of disaturated phosphatidylcholine in fetal rat lung. We conclude that isolation of S fraction components is valuable for demonstrating maturation of the fetal rat lung and may provide a useful tool for the study of regulatory mechanisms influencing surfacttatant production and function. © 1990.

Author-supplied keywords

  • (Rat fetus)
  • Development
  • Fetal lungs
  • Lung surfactant
  • Phospholipid
  • Surface activity
  • Surfactant protein

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Philip M. Farrell

  • Jacques R. Bourbon

  • Robert H. Notter

  • Lea Marin

  • Lawrence M. Nogee

  • Jeffrey A. Whitsett

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free