Aptamer-functionalized nano-pattern based on carbon nanotube for sensitive, selective protein detection

34Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We have developed a horizontally aligned carbon nanotube sensor that enables not only the specific detection of biomolecules with ultra-sensitivity, but also the quantitative characterization of binding affinity between biomolecules and/or interaction between a carbon nanotube and a biomolecule, for future applications in early diagnostics. In particular, we have fabricated horizontally aligned carbon nanotubes, which were functionalized with specific aptamers that are able to specifically bind to biomolecules (i.e. thrombin). Our detection system is based on scanning probe microscopy (SPM) imaging for horizontally aligned aptamer-conjugated carbon nanotubes (ACNTs) that specifically react with target biomolecules at an ultra-low concentration. It is shown that the binding affinity between thrombin molecule and ACNT can be quantitatively characterized using SPM imaging. It is also found that the smart carbon nanotube sensor coupled with SPM imaging permits us to achieve the high detection sensitivity even up to ∼1 pM, which is much higher than that of other bioassay methods. Moreover, we have shown that our method enables a quantitative study on small molecule-mediated inhibition of specific biomolecular interactions. In addition, we have shown that our ACNT-based system allows for the quantitative study of the effect of chemical environment (e.g. pH and ion concentration) on the binding affinity. Our study sheds light on carbon nanotube sensor coupled with SPM imaging, which opens a new avenue to early diagnostics and drug screening with high sensitivity. © The Royal Society of Chemistry 2012.

Cite

CITATION STYLE

APA

Nam, K., Eom, K., Yang, J., Park, J., Lee, G., Jang, K., … Kwon, T. (2012). Aptamer-functionalized nano-pattern based on carbon nanotube for sensitive, selective protein detection. Journal of Materials Chemistry, 22(44), 23348–23356. https://doi.org/10.1039/c2jm33688j

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free