Autothermal methanol reforming for hydrogen production in fuel cell applications

  • Geissler K
  • Newson E
  • Vogel F
 et al. 
  • 4


    Mendeley users who have this article in their library.
  • 121


    Citations of this article.


Fuel cell powered electric cars using on-board methanol reforming to produce a hydrogen-rich gas represent a low-emissions alternative to gasoline internal combustion engines (ICE). In order to exceed the well-to-wheel efficiencies of 17% for the gasoline ICE, high-efficiency fuel cells and methanol reformers must be developed. Catalytic autothermal reforming of methanol offers advantages over endothermic steam-reforming and exothermic partial oxidation. Microreactor testing of copper-containing catalysts was carried out in the temperature range between 250 and 330 degreesC showing nearly complete methanol conversion at 85% hydrogen yield. For the overall process a simplified model of the reaction network, consisting of the total oxidation of methanol, the reverse water-gas shift reaction, and the steam-reforming of methanol, is proposed. Individual kinetic measurements for the latter two reactions on a commercial Cu/ZnO/Al2O3 catalyst are presented.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • K. Geissler

  • E. Newson

  • F. Vogel

  • T. B. Truong

  • P. Hottinger

  • A. Wokaun

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free