Bending dynamics and directionality reversal in liquid crystal network photoactuators

  • Van Oosten C
  • Corbett D
  • Davies D
 et al. 
  • 69

    Readers

    Mendeley users who have this article in their library.
  • 113

    Citations

    Citations of this article.

Abstract

Liquid crystalline photoactuators typically bend toward the light source, driven by the isomerization of azobenzene. In samples with a relatively large thickness and high azobenzene loading such as LC photoactuators, intense optical beams are seen to be absorbed in spatially nonexponential ways. Here we show that the dynamics of the related mechanical behavior is also strongly nonlinear, where the actuator reaches a maximum bend before unbending again to its equilibrium deformed state. The effect is amplified when combined with actuators with an internal composition gradient, leading to a reversal of the bending direction away from the light source. Liquid crystalline photoactuators typically bend toward the light source, driven by the isomerization of azobenzene. In samples with a relatively large thickness and high azobenzene loading such as LC photoactuators, intense optical beams are seen to be absorbed in spatially nonexponential ways. Here we show that the dynamics of the related mechanical behavior is also strongly nonlinear, where the actuator reaches a maximum bend before unbending again to its equilibrium deformed state. The effect is amplified when combined with actuators with an internal composition gradient, leading to a reversal of the bending direction away from the light source.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free