Biomechanics of single cortical neurons

  • Bernick K
  • Prevost T
  • Suresh S
 et al. 
  • 94

    Readers

    Mendeley users who have this article in their library.
  • 42

    Citations

    Citations of this article.

Abstract

This study presents experimental results and computational analysis of the large strain dynamic behavior of single neurons in vitro with the objective of formulating a novel quantitative framework for the biomechanics of cortical neurons. Relying on the atomic force microscopy (AFM) technique, novel testing protocols are developed to enable the characterization of neural soma deformability over a range of indentation rates spanning three orders of magnitude, 10, 1, and 0.1 μm s-1. Modified spherical AFM probes were utilized to compress the cell bodies of neonatal rat cortical neurons in load, unload, reload and relaxation conditions. The cell response showed marked hysteretic features, strong non-linearities, and substantial time/rate dependencies. The rheological data were complemented with geometrical measurements of cell body morphology, i.e. cross-diameter and height estimates. A constitutive model, validated by the present experiments, is proposed to quantify the mechanical behavior of cortical neurons. The model aimed to correlate empirical findings with measurable degrees of (hyper)elastic resilience and viscosity at the cell level. The proposed formulation, predicated upon previous constitutive model developments undertaken at the cortical tissue level, was implemented in a three-dimensional finite element framework. The simulated cell response was calibrated to the experimental measurements under the selected test conditions, providing a novel single cell model that could form the basis for further refinements. © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Author-supplied keywords

  • Atomic force microscopy
  • Cell mechanics
  • Constitutive modeling
  • Finite elements
  • Neuron

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Error loading document authors.

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free