Capillary motor driven by electrowetting

30Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A micro-structure supported on a droplet is subjected to capillary force and aligned dependent on its shape. If the droplet's boundary conditions at the bottom and the micro-structure are non-circular, capillary torque is exerted on the structures. The direction of torque is determined by the boundary conditions and the position of the structure. By changing the boundary conditions continuously, rotational motion of a plate was achieved. The boundary conditions of the droplet were controlled by electrowetting. We patterned electrodes in an annular shape on the plate supporting the droplet. By changing the voltage-applied electrodes, the boundary conditions were changed and the plate is rotated. The droplet and the plate worked as a capillary motor with this method. We report the relationship between the characteristics of the capillary motor and its rotational motion. We sandwiched a 3.0-μL water droplet between two plates and achieved a rotational motion of 720 rpm at maximum. © The Royal Society of Chemistry 2010.

Cite

CITATION STYLE

APA

Takei, A., Matsumoto, K., & Shomoyama, I. (2010). Capillary motor driven by electrowetting. Lab on a Chip, 10(14), 1781–1786. https://doi.org/10.1039/c001211d

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free