Carbon nanotubes as electrodes for dielectrophoresis of DNA

  • Tuukkanen S
  • Toppari J
  • Kuzyk A
 et al. 
  • 69

    Readers

    Mendeley users who have this article in their library.
  • 63

    Citations

    Citations of this article.

Abstract

Dielectrophoresis can potentially be used as an efficient trapping tool in the fabrication of molecular devices. For nanoscale objects, however, the Brownian motion poses a challenge. We show that the use of carbon nanotube electrodes makes it possible to apply relatively low trapping voltages and still achieve high enough field gradients for trapping nanoscale objects, e.g., single molecules. We compare the efficiency and other characteristics of dielectrophoresis between carbon nanotube electrodes and lithographically fabricated metallic electrodes, in the case of trapping nanoscale DNA molecules. The results are analyzed using finite element method simulations and reveal information about the frequency-dependent polarizability of DNA.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free