Changing the stability conditions in a back squat: the effect on maximum load lifted and erector spinae muscle activity

7Citations
Citations of this article
100Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The aim of this study was to identify how changes in the stability conditions of a back squat affect maximal loads lifted and erector spinae muscle activity. Fourteen male participants performed a Smith Machine (SM) squat, the most stable condition, a barbell back (BB) squat, and Tendo-destabilizing bar (TBB) squat, the least stable condition. A one repetition max (1-RM) was established in each squat condition, before electromyography (EMG) activity of the erector spinae was measured at 85% of 1-RM. Results indicated that the SM squat 1-RM load was significantly (p = 0.006) greater (10.9%) than the BB squat, but not greater than the TBB squat. EMG results indicated significantly greater (p < 0.05) muscle activation in the TBB condition compared to other conditions. The BB squat produced significantly greater (p = 0.036) EMG activity compared to the SM squat. A greater stability challenge applied to the torso seems to increase muscle activation. The maximum loads lifted in the most stable and unstable squats were similar. However, the lift with greater stability challenge required greatest muscle activation. The implications of this study may be important for training programmes; if coaches wish to challenge trunk stability, while their athletes lift maximal loads designed to increase strength.

Cite

CITATION STYLE

APA

Fletcher, I. M., & Bagley, A. (2014). Changing the stability conditions in a back squat: the effect on maximum load lifted and erector spinae muscle activity. Sports Biomechanics, 13(4), 380–390. https://doi.org/10.1080/14763141.2014.982697

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free