Changing the stability conditions in a back squat: the effect on maximum load lifted and erector spinae muscle activity

  • Fletcher I
  • Bagley A
  • 32


    Mendeley users who have this article in their library.
  • 0


    Citations of this article.


The aim of this study was to identify how changes in the stability conditions of a back squat affect maximal loads lifted and erector spinae muscle activity. Fourteen male participants performed a Smith Machine (SM) squat, the most stable condition, a barbell back (BB) squat, and Tendo-destabilizing bar (TBB) squat, the least stable condition. A one repetition max (1-RM) was established in each squat condition, before electromyography (EMG) activity of the erector spinae was measured at 85% of 1-RM. Results indicated that the SM squat 1-RM load was significantly (p = 0.006) greater (10.9%) than the BB squat, but not greater than the TBB squat. EMG results indicated significantly greater (p < 0.05) muscle activation in the TBB condition compared to other conditions. The BB squat produced significantly greater (p = 0.036) EMG activity compared to the SM squat. A greater stability challenge applied to the torso seems to increase muscle activation. The maximum loads lifted in the most stable and unstable squats were similar. However, the lift with greater stability challenge required greatest muscle activation. The implications of this study may be important for training programmes; if coaches wish to challenge trunk stability, while their athletes lift maximal loads designed to increase strength. ABSTRACT FROM PUBLISHER

Author-supplied keywords

  • Electromyography
  • muscle activity
  • squat performance
  • torso instability

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free