Chlorophyll binding to monomeric light-harvesting complex. A mutation analysis of chromophore-binding residues

  • Remelli R
  • Varotto C
  • Sandonà D
 et al. 
  • 48


    Mendeley users who have this article in their library.
  • 157


    Citations of this article.


The chromophore binding properties of the higher plant light-harvesting complex II have been studied by site-directed mutagenesis of pigment-binding residues. Mutant apoproteins were overexpressed in Escherichia coli and then refoldedin vitro with purified chromophores to yield holoproteins selectively affected in chlorophyll-binding sites. Biochemical and spectroscopic characterization showed a specific loss of pigments and absorption spectral forms for each mutant, thus allowing identification of the chromophores bound to most of the binding sites. On these bases a map for the occupancy of individual sites by chlorophyll a and chlorophyll b is proposed. In some cases a single mutation led to the loss of more than one chromophore indicating that four chlorophylls and one xanthophyll could be bound by pigment-pigment interactions. Differential absorption spectroscopy allowed identification of the Qy transition energy level for each chlorophyll within the complex. It is shown that not only site selectivity is largely conserved between light-harvesting complex II and CP29 but also the distribution of absorption forms among different protein domains, suggesting conservation of energy transfer pathways within the protein and outward to neighbor subunits of the photosystem.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free