Skip to content
Journal article

Climatic effects of 1950-2050 changes in US anthropogenic aerosols-Part 1: Aerosol trends and radiative forcing

Leibensperger E, Mickley L, Jacob D, Chen W, Seinfeld J, Nenes A, Adams P, Streets D, Kumar N, Rind D ...see all

Atmospheric Chemistry and Physics, vol. 12, issue 7 (2012) pp. 3333-3348

  • 83

    Readers

    Mendeley users who have this article in their library.
  • 60

    Citations

    Citations of this article.
  • N/A

    Views

    ScienceDirect users who have downloaded this article.
Sign in to save reference

Abstract

We calculate decadal aerosol direct and indi-rect (warm cloud) radiative forcings from US anthropogenic sources over the 1950–2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and histor-ical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980–2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated us-ing the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forc-ing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970–1990, with values over the eastern US (east of 100 • W) of −2.0 W m −2 for direct forcing including contributions from sulfate (−2.0 W m −2), nitrate (−0.2 W m −2), organic carbon (−0.2 W m −2), and black carbon (+0.4 W m −2). The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50 %. The aerosol in-direct effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forc-ing declined sharply from 1990 to 2010 (by 0.8 W m −2 di-rect and 1.0 W m −2 indirect), mainly reflecting decreases in SO 2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO 2 emis-sions have already declined by almost 60 % from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3 W m −2 over the eastern US in 2010; 5 % of the global forcing from anthropogenic BC emissions worldwide) sug-gests that a US emission control strategy focused on BC would have only limited climate benefit.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text

Authors

  • E. M. Leibensperger

  • L. J. Mickley

  • D. J. Jacob

  • W. T. Chen

  • J. H. Seinfeld

  • A. Nenes

Cite this document

Choose a citation style from the tabs below