Comparative analysis of oxygen transfer rate distribution in stirred bioreactor for simulated and real fermentation broths

14Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Study of the distribution of the oxygen mass transfer coefficient, k l a, for a stirred bioreactor and simulated (pseudoplastic solutions of carboxymethylcellulose sodium salt) bacterial (P. shermanii), yeast (S. cerevisiae), and fungal (P. chrysogenum free mycelia) broths indicated significant variation of transfer rate with bioreactor height. The magnitude of the influence of the considered factors differed from one region to another. As a consequence of cell adsorption to bubble surface, the results indicated the impossibility of achieving a uniform oxygen transfer rate throughout the whole bulk of the microbial broth, even when respecting the conditions for uniform mixing. Owing to the different affinity of biomass for bubble surface, the positive influence of power input on k l a is more important for fungal broths, while increasing aeration is favorable only for simulated, bacterial and yeast broths. The influence of the considered factors on k l a were included in mathematical correlations established based on experimental data. For all considered positions, the proposed equations for real broths have the general expression k la = αC betax(P a/V) γv δS, exhibiting good agreement with experimental results (with maximum deviations of ±10.7% for simulated broths, ±8.4% for P. shermanii, ±9.3% for S. cerevisiae, and ±6.6% for P. chrysogenum). © 2010 Society for Industrial Microbiology.

Cite

CITATION STYLE

APA

Caşcaval, D., Galaction, A. I., & Turnea, M. (2011). Comparative analysis of oxygen transfer rate distribution in stirred bioreactor for simulated and real fermentation broths. Journal of Industrial Microbiology and Biotechnology, 38(9), 1449–1466. https://doi.org/10.1007/s10295-010-0930-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free