Comparison of experiments and simulation of joule heating in ac electrokinetic chips

9Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.
Get full text

Abstract

AC electrokinetic manipulations of particles and fluids are important techniques in the development of lab-on-a-chip technologies. Most of these systems involve planar microelectrode geometries, generating high strength electric fields. When these fields are applied to a dielectric medium, Joule heating occurs. Understanding electrothermal heating and monitoring the temperature in these environments are critical for temperaturesensitive investigations including biological applications. Additionally, significant changes in fluid temperature when subjected to an electric field will induce electrohydrodynamic flows, potentially disrupting the intended microfluidic profile. This work investigates heat generated from the interaction of ac electric fields and water at various electrical conductivities (from 0.92 mS/m to 390 mS/m). The electrode geometry is an indium tin oxide (ITO) electrode strip 20 μm wide and a grounded, planar ITO substrate separated by a 50 μm spacer with microfluidic features. Laser-induced fluorescence is used to measure the experimental changes in temperature. A normalization procedure that requires a single temperature-sensitive dye, Rhodamine B (RhB), is used to reduce uncertainty. The experimental electrothermal results are compared with theory and computer simulations. © 2010 by ASME.

Cite

CITATION STYLE

APA

Williams, S. J., Chamarthy, P., & Wereley, S. T. (2010). Comparison of experiments and simulation of joule heating in ac electrokinetic chips. Journal of Fluids Engineering, Transactions of the ASME, 132(2), 0211031–0211037. https://doi.org/10.1115/1.4000740

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free