The conformational cycle of kinesin

  • Cross R
  • Crevel I
  • Carter N
 et al. 
  • 40


    Mendeley users who have this article in their library.
  • 28


    Citations of this article.


The stepping mechanism of kinesin can be thought of as a programme of conformational changes. We briefly review protein chemical, electron microscopic and transient kinetic evidence for conformational changes, and working from this evidence, outline a model for the mechanism. In the model, both kinesin heads initially trap Mg x ADP. Microtubule binding releases ADP from one head only (the trailing head). Subsequent ATP binding and hydrolysis by the trailing head progressively accelerate attachment of the leading head, by positioning it closer to its next site. Once attached, the leading head releases its ADP and exerts a sustained pull on the trailing head. The rate of closure of the molecular gate which traps ADP on the trailing head governs its detachment rate. A speculative but crucial coordinating feature is that this rate is strain sensitive, slowing down under negative strain and accelerating under positive strain.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text


  • R. A. Cross

  • I. Crevel

  • N. J. Carter

  • M. C. Alonso

  • K. Hirose

  • L. A. Amos

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free