Convergence of sequential Markov Chain Monte Carlo methods: I. Nonlinear flow of probability measures

  • Eberle A
  • Marinelli C
  • 12


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


Sequential Monte Carlo Samplers are a class of stochastic algorithms for Monte Carlo integral estimation w.r.t. probability distributions, which combine elements of Markov chain Monte Carlo methods and importance sampling/resampling schemes. We develop a stability analysis by functional inequalities for a nonlinear flow of probability measures describing the limit behavior of the algorithms as the number of particles tends to infinity. Stability results are derived both under global and local assumptions on the generator of the underlying Metropolis dynamics. This allows us to prove that the combined methods sometimes have good asymptotic stability properties in multimodal setups where traditional MCMC methods mix extremely slowly. For example, this holds for the mean field Ising model at all temperatures.

Author-supplied keywords

  • probability

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

There are no full text links


  • Andreas Eberle

  • Carlo Marinelli

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free