COPD subtypes identified by network-based clustering of blood gene expression

  • Chang Y
  • Glass K
  • Liu Y
 et al. 
  • 30


    Mendeley users who have this article in their library.
  • 7


    Citations of this article.


One of the most common smoking-related diseases, chronic obstructive pulmonary disease (COPD), results from a dysregulated, multi-tissue inflammatory response to cigarette smoke. We hypothesized that systemic inflammatory signals in genome-wide blood gene expression can identify clinically important COPD-related disease subtypes, and we leveraged pre-existing gene interaction networks to guide unsupervised clustering of blood microarray expression data. Using network-informed non-negative matrix factorization, we analyzed genome-wide blood gene expression from 229 former smokers in the ECLIPSE Study, and we identified novel, clinically relevant molecular subtypes of COPD. These network-informed clusters were more stable and more strongly associated with measures of lung structure and function than clusters derived from a network-naïve approach, and they were associated with subtype-specific enrichment for inflammatory and protein catabolic pathways. These clusters were successfully reproduced in an independent sample of 135 smokers from the COPDGene Study.

Author-supplied keywords

  • Chronic obstructive pulmonary disease
  • Disease subtypes
  • Gene expression
  • Network analysis
  • Smoking

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free