The CQ ratio of surface energy components influences adhesion and removal of fouling bacteria.

  • Liu C
  • Zhao Q
  • 22


    Mendeley users who have this article in their library.
  • 21


    Citations of this article.


The interaction energy between bacteria and substrata with different surface energies was modelled by the extended DLVO (Derjaguin, Landau, Verwey and Overbeek) theory. The modeling results revealed that the interaction energy has a strong correlation with the CQ (Chen and Qi) ratio, which is defined as the ratio of the Lifshitz-van der Waals (LW) apolar to the electron donor surface energy components of substrata. Both modeling and experimental results with different bacteria including P. fluorescens, Cobetia marina and Vibrio alginolyticus demonstrated that if the LW surface energy of bacteria is larger than that of water, which is the case for most bacteria, the number of adhered bacteria decreases with a decreasing CQ ratio while bacterial removal rate increases with a decreasing CQ ratio. However, if the LW surface energy of bacteria is less than that of water, the opposite results are obtained. The CQ ratio gives a clear direction for the design of anti-biofouling and biofouling-release coatings through surface modification.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free