Deep-water plunging breakers: A comparison between potential theory and experiments

  • Chan E
  • Melville W
  • Lin W
 et al. 
  • 43


    Mendeley users who have this article in their library.
  • 121


    Citations of this article.


ABSTRACT The primary objective of this paper is to provide a detailed confirmation of the validity of potential-flow theory for describing steep gravity waves produced in an experimental tank. Very high-resolution computations are carried out which use a refined mixed Eulerian-Lagrangian solution scheme under the assumptions of potential flow. The numerical results for a plunging breaker produced by a programmed piston-type wavemaker are found to be in excellent agreement with tank measurements up to and including overturning. The calculated free-surface elevations are almost indistinguishable from measured profiles, even close to where the wave plunges. The horizontal and vertical water-particle velocities measured with a laser anemometer throughout the water depth at two longitudinal stations are also well predicted by the theory. In contrast to the fully nonlinear theory, predictions based on linearized theory become poorer as the wave packet moves down the tank. To allow other investigators to evaluate the computations and experiments, the Fourier amplitudes and phases which completely specify the time history of the wavemaker's velocity are given in Appendix B.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • E. S. Chan

  • W. K. Melville

  • W. M. Lin

  • R. J. Rapp

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free