Denosumab and bisphosphonates: Different mechanisms of action and effects

518Citations
Citations of this article
497Readers
Mendeley users who have this article in their library.
Get full text

Abstract

To treat systemic bone loss as in osteoporosis and/or focal osteolysis as in rheumatoid arthritis or periodontal disease, most approaches target the osteoclasts, the cells that resorb bone. Bisphosphonates are currently the most widely used antiresorptive therapies. They act by binding the mineral component of bone and interfere with the action of osteoclasts. The nitrogen-containing bisphosphonates, such as alendronate, act as inhibitors of farnesyl-pyrophosphate synthase, which leads to inhibition of the prenylation of many intracellular signaling proteins. The discovery of RANKL and the essential role of RANK signaling in osteoclast differentiation, activity and survival have led to the development of denosumab, a fully human monoclonal antibody. Denosumab acts by binding to and inhibiting RANKL, leading to the loss of osteoclasts from bone surfaces. In phase 3 clinical studies, denosumab was shown to significantly reduce vertebral, nonvertebral and hip fractures compared with placebo and increase areal BMD compared with alendronate. In this review, we suggest that the key pharmacological differences between denosumab and the bisphosphonates reside in the distribution of the drugs within bone and their effects on precursors and mature osteoclasts. This may explain differences in the degree and rapidity of reduction of bone resorption, their potential differential effects on trabecular and cortical bone, and the reversibility of their actions. © 2010 Elsevier Inc.

Cite

CITATION STYLE

APA

Baron, R., Ferrari, S., & Russell, R. G. G. (2011, April 1). Denosumab and bisphosphonates: Different mechanisms of action and effects. Bone. https://doi.org/10.1016/j.bone.2010.11.020

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free