Determination of sulfur environments in borosilicate waste glasses using X-ray absorption near-edge spectroscopy

71Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Sulfur can be the waste-loading limiting constituent for vitrification of sulfur-bearing radioactive wastes due to low solubility in silicate melts. Methods to improve sulfur loading would benefit from improved understanding of the structural aspects of sulfur incorporation in borosilicate and other glasses. To this end, sulfur XANES spectra were collected for eight crystalline standards and twenty-four glasses, including borosilicate, phosphate, and borate compositions. Spectra for the standards show a systematic energy shift of the sulfur K-edge from 2469 to 2482 eV, as sulfur valence increases from 2- (in sulfides) to 6+ (in sulfates). Most crucible glasses investigated have simple edges near 2482 eV that indicate sulfur in the form of sulfate only. Other glasses, some synthesized under reducing conditions, have complicated edges, indicating sulfate, sulfite, and more reduced species that may include S, S-S doublets, or short polysulfide chains. Sulfide species (S2-) were not dominant in any of the samples over the range of redox conditions investigated. These results indicate that sulfur incorporation is considerably more complex than would be suggested by the conventional interpretation of the redox-dependence of sulfur solubility, which considers only sulfate and sulfide species. Raman data indicate that several of the glasses investigated are not homogeneous with regard to all sulfur species. © 2003 Elsevier B.V. All rights reserved.

Cite

CITATION STYLE

APA

McKeown, D. A., Muller, I. S., Gan, H., Pegg, I. L., & Stolte, W. C. (2004). Determination of sulfur environments in borosilicate waste glasses using X-ray absorption near-edge spectroscopy. Journal of Non-Crystalline Solids, 333(1), 74–84. https://doi.org/10.1016/j.jnoncrysol.2003.09.035

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free