The distribution of fitness effects among beneficial mutations in Fisher's geometric model of adaptation

83Citations
Citations of this article
184Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Recent models of adaptation at the DNA sequence level assume that the fitness effects of new mutations show certain statistical properties. In particular, these models assume that the distribution of fitness effects among new mutations is in the domain of attraction of the so-called Gumbel-type extreme value distribution. This assumption has not, however, been justified on any biological or theoretical grounds. In this note, I study random mutation in one of the simplest models of mutation and adaptation - Fisher's geometric model. I show that random mutation in this model yields a distribution of mutational effects that belongs to the Gumbel type. I also show that the distribution of fitness effects among rare beneficial mutations in Fisher's model is asymptotically exponential. I confirm these analytic findings with exact computer simulations. These results provide some support for the use of Gumbel-type extreme value theory in studies of adaptation and point to a surprising connection between recent phenotypic- and sequence-based models of adaptation: in both, the distribution of fitness effects among rare beneficial mutations is approximately exponential. © 2005 Elsevier Ltd. All rights reserved.

Cite

CITATION STYLE

APA

Orr, H. A. (2006). The distribution of fitness effects among beneficial mutations in Fisher’s geometric model of adaptation. Journal of Theoretical Biology, 238(2), 279–285. https://doi.org/10.1016/j.jtbi.2005.05.001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free