EDLC characteristics with high specific capacitance of the CNT electrodes grown on nanoporous alumina templates

40Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Well-ordered nanoporous alumina templates were fabricated by two-step anodization method by applying a constant voltage of 40 V in oxalic acid solution or of 25 V in sulfuric acid solution. The cylindrical pore diameter and pore density of the templates utilized for the carbon nanotube (CNT) growth were 86 ± 5 nm and 1.2 × 1010 cm-2 in oxalic acid solution and 53 ± 1 nm and 3.1 × 1010 cm-2 in sulfuric acid solution, respectively. The CNTs with uniform diameter of 50 ± 10 nm (oxalic acid) and 44 ± 2 nm (sulfuric acid) were grown on the porous alumina template as electrode materials for the electrochemical double layer capacitor (EDLC). The EDLC characteristics were examined by measuring the capacitances from cyclic voltammograms and the charge-discharge curves. The specific capacitances of the CNT electrodes are 30 ± 1 F/g (Φ = 50 ± 10 nm) and 121 ± 5 F/g (Φ = 44 ± 2 nm). The high specific capacitance of the CNT electrode was achieved by using nanoporous alumina templates with the high pore density and the small and uniform pore diameter. © 2005 Elsevier B.V. All rights reserved.

Cite

CITATION STYLE

APA

Wen, S., Jung, M., Joo, O. S., & Mho, S. il. (2006). EDLC characteristics with high specific capacitance of the CNT electrodes grown on nanoporous alumina templates. Current Applied Physics, 6(6 SPEC. ISS.), 1012–1015. https://doi.org/10.1016/j.cap.2005.07.008

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free