Effect of hydrophilicity of polyaniline particles on their electrorheology: Steady flow and dynamic behaviour

24Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Electrorheological properties of suspensions are considerably affected by hydrophilicity of suspension particles. As a model material, polyaniline base powder protonated with sulfamic, tartaric, or perfluorooctanesulfonic acids provided particles of various hydrophilicity. The experiments revealed that, in the absence of electric field, due to a good compatibility of hydrophobic polyaniline particles with silicone-oil medium, their interactions were limited and the viscosity of suspension was low. When the electric field was applied, the rigidity of the polarized chain structure of the particles increased and, consequently, viscosity increased as well. In the contrast, the field-off suspension viscosity of highly interacting hydrophilic particles, which are incompatible with the oil, and where particle aggregation may set in, was high especially at low shear rates, and the material had a pseudoplastic character. Then, a relative increase in viscosity due to the polarization of the particles or their clusters in the electric field was much lower than in the former case. Due to a different primary structure of suspension, depending on the particle compatibility with the oil the field-off storage modulus of suspensions of hydrophobic particles was lower than the loss modulus, while in suspensions of hydrophilic particles the former modulus dominated. In both cases, an increase in elasticity with increasing electric field strength was higher than that in viscosity. © 2010 Elsevier Inc.

Cite

CITATION STYLE

APA

Stěnička, M., Pavlínek, V., Sáha, P., Blinova, N. V., Stejskal, J., & Quadrat, O. (2010). Effect of hydrophilicity of polyaniline particles on their electrorheology: Steady flow and dynamic behaviour. Journal of Colloid and Interface Science, 346(1), 236–240. https://doi.org/10.1016/j.jcis.2010.02.046

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free