Efficient rank based KNN query processing over uncertain data

  • Zhang Y
  • Lin X
  • Zhu G
 et al. 
  • 27


    Mendeley users who have this article in their library.
  • 23


    Citations of this article.


Uncertain data are inherent in many applications such as environmental surveillance and quantitative economics research. As an important problem in many applications, KNN query has been extensively investigated in the literature. In this paper, we study the problem of processing rank based KNN query against uncertain data. Besides applying the expected rank semantic to compute KNN, we also introduce the median rank which is less sensitive to the outliers. We show both ranking methods satisfy nice top-k properties such as exact-k, containment, unique ranking, value invariance, stability and fairfulness. For given query q, IO and CPU efficient algorithms are proposed in the paper to compute KNN based on expected (median) ranks of the uncertain objects. To tackle the correlations of the uncertain objects and high IO cost caused by large number of instances of the uncertain objects, randomized algorithms are proposed to approximately compute KNN with theoretical guarantees. Comprehensive experiments are conducted on both real and synthetic data to demonstrate the efficiency of our techniques.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Ying Zhang

  • Xuemin Lin

  • Gaoping Zhu

  • Wenjie Zhang

  • Qianlu Lin

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free