Elementary theory of bed-sediment entrainment by debris flows and avalanches

  • Iverson R
  • 79

    Readers

    Mendeley users who have this article in their library.
  • 83

    Citations

    Citations of this article.

Abstract

Analyses of mass and momentum exchange between a debris flow or avalanche and an underlying sediment layer aid interpretations and predictions of bed-sediment entrainment rates. A preliminary analysis assesses the behavior of a Coulomb slide block that entrains bed material as it descends a uniform slope. The analysis demonstrates that the block's momentum can grow unstably, even in the presence of limited entrainment efficiency. A more-detailed, depth-integrated continuum analysis of interacting, deformable bodies identifies mechanical controls on entrainment efficiency, and shows that entrainment rates satisfy a jump condition that involves shear-traction and velocity discontinuities at the flow-bed boundary. Explicit predictions of the entrainment rate E result from making reasonable assumptions about flow velocity profiles and boundary shear tractions. For Coulomb-friction tractions, predicted entrainment rates are sensitive to pore fluid pressures that develop in bed sediment as it is overridden. In the simplest scenario the bed sediment liquefies completely, and the entrainment-rate equation reduces to E = 2 mu(1)gh(1) cos theta(1 - lambda(1))/(v) over bar (1), where theta is the slope angle, mu(1) is the flow's Coulomb friction coefficient, h(1) is its thickness, lambda(1) is its degree of liquefaction, and (v) over bar (1) is its depth-averaged velocity. For values of lambda(1) ranging from 0.5 to 0.8, this equation predicts entrainment rates consistent with rates of 0.05 to 0.1 m/s measured in large-scale debris-flow experiments in which wet sediment beds liquefied almost completely. The propensity for bed liquefaction depends on several factors, including sediment porosity, permeability, and thickness, and rates of compression and shear deformation that occur when beds are overridden.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Richard M. Iverson

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free