Elevated concentrations of morphine 6-beta-D-glucuronide in brain extracellular fluid despite low blood-brain barrier permeability

77Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

1. This study was done to find out how morphine 6-beta-D-glucuronide (M6G) induces more potent central analgesia than morphine, despite its poor blood-brain barrier (BBB) permeability. The brain uptake and disposition of these compounds were investigated in plasma and in various brain compartments: extracellular fluid (ECF), intracellular space (ICS) and cerebrospinal fluid (CSF). 2. Morphine or M6G was given to rats at 10 mg kg-1 s.c. Transcortical microdialysis was used to assess their distributions in the brain ECF. Conventional tissue homogenization was used to determine the distribution in the cortex and whole brain. These two procedures were combined to estimate drug distribution in the brain ICS. The blood and CSF pharmacokinetics were also determined. 3. Plasma concentration data for M6G were much higher than those of morphine, with C(max) and AUC 4-5 times more higher, T(max) shorter, and V(Z) f-1 (volume of distribution) and CL f-1 (clearance) 4-6 times lower. The concentrations of the compounds in various brain compartments also differed: AUC values for M6G were lower than those of morphine in tissue and CSF and higher in brain ECF. AUC values in brain show that morphine levels were four times higher in ICS than in ECF, whereas M6G levels were 125 higher in ECF than in ICS. 4. Morphine entered brain cells, whereas M6G was almost exclusively extracellular. This high extracellular concentration, coupled with extremely slow diffusion into the CSF, indicates that M6G was predominantly trapped in the extracellular fluid and therefore durably available to bind at opioid receptors.

Cite

CITATION STYLE

APA

Stain-Texier, F., Boschi, G., Sandouk, P., & Scherrmann, J. M. (1999). Elevated concentrations of morphine 6-beta-D-glucuronide in brain extracellular fluid despite low blood-brain barrier permeability. British Journal of Pharmacology, 128(4), 917–924. https://doi.org/10.1038/sj.bjp.0702873

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free