Energetics of nanoscale graphitic tubules

964Citations
Citations of this article
172Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Using both empirical potentials and first-principles total-energy methods, we have examined the energetics and elastic properties of all possible graphitic tubules with radii less than 9. We find that the strain energy per carbon atom relative to an unstrained graphite sheet varies as 1/R2 (where R is the tubule radius) and is insensitive to other aspects of the lattice structure, indicating that relationships derivable from continuum elastic theory persist well into the small-radius limit. We also predict that this strain energy is much smaller than that in highly symmetric fullerene clusters with similar radii, suggesting a possible thermodynamic preference for tubular structures rather than cage structures. The empirical potentials further predict that the elastic constants along the tubule axis generally soften with decreasing tubule radius, although with a distinct dependence on helical conformation. © 1992 The American Physical Society.

Cite

CITATION STYLE

APA

Robertson, D. H., Brenner, D. W., & Mintmire, J. W. (1992). Energetics of nanoscale graphitic tubules. Physical Review B, 45(21), 12592–12595. https://doi.org/10.1103/PhysRevB.45.12592

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free