Energy system contribution during 200- to 1500-m running in highly trained athletes

230Citations
Citations of this article
478Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Purpose: The purpose of the present study was to profile the aerobic and anaerobic energy system contribution during high-speed treadmill exercise that simulated 200-, 400-, 800-, and 1500-m track running events. Methods: Twenty highly trained athletes (Australian National Standard) participated in the study, specializing in either the 200-m (N = 3), 400-m (N = 6), 800-m (N = 5), or 1500-m (N = 6) event (mean VO2 peak [mL·kg-l-min-1] ± SD = 56 ± 2, 59 ± 1, 67 ± 1, and 72 ± 2, respectively). The relative aerobic and anaerobic energy system contribution was calculated using the accumulated oxygen deficit (AOD) method. Results: The relative contribution of the aerobic energy system to the 200-, 400-, 800-, and 1500-m events was 29 ± 4, 43 ± 1, 66 ± 2, and 84 ± 1% ± SD, respectively. The size of the AOD increased with event duration during the 200-, 400-, and 800-m events (30.4 ± 2.3, 41.3 ± 1.0, and 48.1 ± 4.5 mL·kg-1, respectively), but no further increase was seen in the 1500-m event (47.1 ± 3.8 mL·kg-1). The crossover to predominantly aerobic energy system supply occurred between 15 and 30 s for the 400-, 800-, and 1500-m events. Conclusions: These results suggest that the relative contribution of the aerobic energy system during track running events is considerable and greater than traditionally thought.

Cite

CITATION STYLE

APA

Spencer, M. R., & Gastin, P. B. (2001). Energy system contribution during 200- to 1500-m running in highly trained athletes. Medicine and Science in Sports and Exercise, 33(1), 157–162. https://doi.org/10.1097/00005768-200101000-00024

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free