Enzymatic hydrolysis of cellulose: Visual characterization of the process

  • White A
  • Brown R
  • 60


    Mendeley users who have this article in their library.
  • 90


    Citations of this article.


Cellulose from the Gram-negative bacterium Acetobacter xylinum has been used as a model substrate for visualizing the action of cellulase enzymes from the fungus Trichoderma reesei. High-resolution electron microscopy reveals that A. xylinum normally produces a ribbon of cellulose that is a composite of bundles of crystalline microfibrils. Visual patterns of the process of cellulose degradation have been established. Enzymes are initially observed bound to the cellulose ribbon. Within 10 min, the ribbon is split along its long axis into bundles of microfibrils which are subsequently thinned until they are completely dissolved within 30 min. Incubations with purified components of the cellulase enzyme system produced less dramatic changes in ribbon structure. Purified 1,4-beta-D-glucan cellobiohydrolase I (D) (EC produced no visible change in cellulose structure. Purified endo-1,4-beta-D-glucanase IV (EC produced some splaying of ribbons into microfibril bundles. In both cases, whole ribbons were present even after 60 min of incubation, visually confirming the synergistic mode of action of these enzymes.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • A. R. White

  • R. M. Brown

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free