Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance

1.9kCitations
Citations of this article
1.1kReaders
Mendeley users who have this article in their library.
Get full text

Abstract

Farmers must balance the competing goals of supplying adequate N for their crops while minimizing N losses to the environment. To characterize the spatial variability of N over large fields, traditional methods (soil testing, plant tissue analysis, and chlorophyll meters) require many point samples. Because of the close link between leaf chlorophyll and leaf N concentration, remote sensing techniques have the potential to evaluate the N variability over large fields quickly. Our objectives were to (1) select wavelengths sensitive to leaf chlorophyll concentration, (2) simulate canopy reflectance using a radiative transfer model, and (3) propose a strategy for detecting leaf chlorophyll status of plants using remotely sensed data. A wide range of leaf chlorophyll levels was established in field-grown corn (Zea mays L.) with the application of 8 N levels: 0%, 12.5%, 25%, 50%, 75%, 100%, 125%, and 150% of the recommended rate. Reflectance and transmittance spectra of fully expanded upper leaves were acquired over the 400-nm to 1,000-nm wavelength range shortly after anthesis with a spectroradiometer and integrating sphere. Broad-band differences in leaf spectra were observed near 550 nm, 715 nm, and >750 nm. Crop canopy reflectance was simulated using the SAIL (Scattering by Arbitrarily Inclined Leaves) canopy reflectance model for a wide range of background reflectances, leaf area indices (LAI), and leaf chlorophyll concentrations. Variations in background reflectance and LAI confounded the detection of the relatively subtle differences in canopy reflectance clue to changes in leaf chlorophyll concentration. Spectral vegetation indices that combined near-infrared reflectance and red reflectance (e.g., OSAVI and NIR/Red) minimized contributions of background reflectance, while spectral vegetation indices that combined reflectances of near-infrared and other visible bands (MCARI and NIR/Green) were responsive to both leaf chlorophyll concentrations and background reflectance. Pairs of these spectral vegetation indices plotted together produced isolines of leaf chlorophyll concentrations. The slopes of these isolines were linearly related to leaf chlorophyll concentration. A limited test with measured canopy reflectance and leaf chlorophyll data confirmed these results. The characterization of leaf chlorophyll concentrations at the field scale without the confounding problem of background reflectance and LAI variability holds promise as a valuable aid for decision making in managing N applications.

Cite

CITATION STYLE

APA

Daughtry, C. S. T., Walthall, C. L., Kim, M. S., De Colstoun, E. B., & McMurtrey, J. E. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74(2), 229–239. https://doi.org/10.1016/S0034-4257(00)00113-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free