Excitation - Contraction uncoupling by a human central core disease mutation in the ryanodine receptor

124Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Central core disease (CCD) is a human congenital myopathy characterized by fetal hypotonia and proximal muscle weakness that is linked to mutations in the gene encoding the type-1 ryanodine receptor (RyR1). CCD is thought to arise from Ca2+-induced damage stemming from mutant RyR1 proteins forming "leaky" sarcoplasmic reticulum (SR) Ca2+ release channels. A novel mutation in the C-terminal region of RyR1 (I4898T) accounts for an unusually severe and highly penetrant form of CCD in humans [Lynch, P. J., Tong, J., Lehane, M., Mallet, A., Giblin, L., Heffron, J. J., Vaughan, P., Zafra, G., MacLennan, D. H. & McCarthy, T. V. (1999) Proc. Natl. Acad. Sci. USA 96, 4164-4169]. We expressed in skeletal myotubes derived from RyR1-knockout (dyspedic) mice the analogous mutation engineered into a rabbit RyR1 cDNA (I4897T). Here we show that homozygous expression of I4897T in dyspedic myotubes results in a complete uncoupling of sarcolemmal excitation from voltagegated SR Ca2+ release without significantly altering resting cytosolic Ca2+ levels, SR Ca2+ content, or RyR1-mediated enhancement of dihydropyridine receptor (DHPR) channel activity. Coexpression of both I4897T and wild-type RyR1 resulted in a 60% reduction in voltage-gated SR Ca2+ release, again without altering resting cytosolic Ca2+ levels, SR Ca2+ content, or DHPR channel activity. These findings indicate that muscle weakness suffered by individuals possessing the I4898T mutation involves a functional uncoupling of sarcolemmal excitation from SR Ca2+ release, rather than the expression of overactive or leaky SR Ca2+ release channels.

Cite

CITATION STYLE

APA

Avila, G., O’Brien, J. J., & Dirksen, R. T. (2001). Excitation - Contraction uncoupling by a human central core disease mutation in the ryanodine receptor. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 4215–4220. https://doi.org/10.1073/pnas.071048198

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free