Existence and stability of standing pulses in neural networks: I. Existence

55Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We consider the existence of standing pulse solutions of a neural network integro-differential equation. These pulses are bistable with the zero state and may be an analogue for short term memory in the brain. The network consists of a single layer of neurons synaptically connected by lateral inhibition. Our work extends the classic Amari result by considering a nonsaturating gain function. We consider a specific connectivity function where the existence conditions for single pulses can be reduced to the solution of an algebraic system. In addition to the two localized pulse solutions found by Amari, we find that three or more pulses can coexist. We also show the existence of nonconvex "dimpled" pulses and double pulses. We map out the pulse shapes and maximum firing rates for different connection weights and gain functions. © 2005 Society for Industrial and Applied Mathematics.

Cite

CITATION STYLE

APA

Guo, Y., & Chow, C. C. (2005). Existence and stability of standing pulses in neural networks: I. Existence. SIAM Journal on Applied Dynamical Systems, 4(2), 217–248. https://doi.org/10.1137/040609471

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free