Fault residual generation via nonlinear analytical redundancy

47Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Fault detection is critical in many applications, and analytical redundancy (AR) has been the key underlying tool for many approaches to fault detection. However, the conventional AR approach is formally limited to linear systems. In this brief, we exploit the structure of nonlinear geometric control theory to derive a new nonlinear analytical redundancy (NLAR) framework. The NLAR technique is applicable to affine systems and is seen to be a natural extension of linear AR. The NLAR structure introduced in this brief is tailored toward practical applications. Via an example of robot fault detection, we show the considerable improvement in performance generated by the approach compared with the traditional linear AR approach. © 2005 IEEE.

Cite

CITATION STYLE

APA

Leuschen, M. L., Walker, I. D., & Cavallaro, J. R. (2005). Fault residual generation via nonlinear analytical redundancy. IEEE Transactions on Control Systems Technology, 13(3), 452–458. https://doi.org/10.1109/TCST.2004.839577

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free