Fouling and stability of polymers and composites in marine environment

  • Muthukumar T
  • Aravinthan A
  • Lakshmi K
 et al. 
  • 117

    Readers

    Mendeley users who have this article in their library.
  • 41

    Citations

    Citations of this article.

Abstract

Effect of biofouling on various polymers and composites such as, Polyurethane (PU), Silicone rubber (SR), Polyester (PET), Glass Fiber Reinforced Polymer (GFRP), Carbon fibre Reinforced Plastic (CFRP) and Syntactic foams (SF) deployed for a period of one year in marine waters at a depth of 1 m was studied. These materials find wide marine applications. SR with lowest surface energy was the least fouled. Maximum barnacle attachment was seen on hard surface (GFRP) and minimum on flexible surface (SR). Attachment of barnacles and polychaetes are positively correlated with surface energy. Fouling load is positively correlated with Surface energy and hardness. The surface energy, hardness and tensile strength reduced while surface roughness considerably increased during this period. Maximum gravimetric weight loss was seen in PET (7.49%) followed by PU (4.25%) and minimum in CFRP (0.45%). Maximum thermogravimetric weight loss was observed in PET (73.5% at 400 °C) followed by PU (71.1%) and least in SR (2.4%). Fourier Transform infrared spectrum revealed that carbonyl/oxidation indices decreased for PET, GFRP, CFRP, and SR indicating biotic degradation. The same index increased for PU indicating abiotic oxidation. © 2010 Elsevier Ltd.

Author-supplied keywords

  • AFM
  • Biofouling
  • FTIR
  • Hardness
  • Surface energy
  • Total suspended solids

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free