The fractal dimensions of lithic reduction

  • Brown C
  • 86

    Readers

    Mendeley users who have this article in their library.
  • 18

    Citations

    Citations of this article.

Abstract

The fractal distribution is the best statistical model for the size-frequency distributions that result from some lithic reduction processes. Fractals are a large class of complex, self-similar sets that can be described using power-law relations. Fractal statistical distributions are characterized by an exponent, D, called the fractal dimension. I show how to determine whether the size-frequency distribution of a sample of debitage is fractal by plotting the power-law relation on a log-log graph. I also show how to estimate the fractal dimension for any particular distribution. Using debitage size data from experimental replications of lithic tools, I demonstrate a fundamental relationship between the fractal dimension and stage of reduction. I also present archaeological case studies that illustrate the simplicity and utility of the method. © 2001 Academic Press.

Author-supplied keywords

  • Fractals
  • Lithic debitage
  • Lithic reduction
  • Size-frequency distribution

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Clifford T. Brown

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free