Full-band envelope-function approach for type-II broken-gap superlattices

  • Andlauer T
  • Vogl P
  • 27

    Readers

    Mendeley users who have this article in their library.
  • 8

    Citations

    Citations of this article.

Abstract

We present a charge self-consistent mesoscopic electronic-structure method for type-II broken-gap superlattices that is based on the multiband k*p envelope-function method. This scheme avoids the separate classification and occupation of electron and hole states that causes the standard effective-mass theory to fail once conduction- and valence-band states strongly intermix. The computational efficiency of envelope-function methods is maintained. Free or bound charge-carrier redistributions can be taken into account self-consistently. With this method that we term as full-band envelope-function approach, we calculate effective band gaps, effective masses, and optical transition energies of InAs/GaSb superlattices as a function of the layer width. Good agreement with experiment is obtained.We also discuss semiconductor to semimetal transitions in wide layer structures. We find the charge carriers to form a two-dimensional gas of approximately massless Dirac particles at a critical layer width.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Till Andlauer

  • Peter Vogl

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free