Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation

  • Niessen J
  • Schröder U
  • Harnisch F
 et al. 
  • 88


    Mendeley users who have this article in their library.
  • 54


    Citations of this article.


AIM: To exploit the fermentative hydrogen generation and direct hydrogen oxidation for the generation of electric current from the degradation of cellulose. METHODS AND RESULTS: Utilizing the metabolic activity of the mesophilic anaerobe Clostridium cellulolyticum and the thermophilic Clostridium thermocellum we show that electricity generation is possible from cellulose fermentation. The current generation is based on an in situ oxidation of microbially synthesized hydrogen at platinum-poly(tetrafluoroaniline) (Pt-PTFA) composite electrodes. Current densities of 130 mA l(-1) (with 3 g cellulose per litre medium) were achieved in poised potential experiments under batch and semi-batch conditions. CONCLUSIONS: The presented results show that electricity generation is possible by the in situ oxidation of hydrogen, product of the anaerobic degradation of cellulose by cellulolytic bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: For the first time, it is shown that an insoluble complex carbohydrate like cellulose can be used for electricity generation in a microbial fuel cell. The concept represents a first step to the utilization of macromolecular biomass components for microbial electricity generation.

Author-supplied keywords

  • Biohydrogen
  • Cellulose
  • Clostridium
  • Hydrogen oxidation
  • Microbial fuel cells

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free