The generalized area theorem and some of its consequences

  • Méasson C
  • Montanari A
  • Richardson T
 et al. 
  • 25


    Mendeley users who have this article in their library.
  • 47


    Citations of this article.


There is a fundamental relationship between belief propagation (BP) and maximum a posteriori decoding. The case of transmission over the binary erasure channel was investigated in detail in a companion paper (C. MEacuteasson, A. Montanari, and R. Urbanke, "Maxwell's construction: The hidden bridge between iterative and maximum a posteriori decoding," IEEE Transactions on Information Theory, submitted for publication). This paper investigates the extension to general memoryless channels (paying special attention to the binary case). An area theorem for transmission over general memoryless channels is introduced and some of its many consequences are discussed. We show that this area theorem gives rise to an upper bound on the maximum a posteriori threshold for sparse graph codes. In situations where this bound is tight, the extrinsic soft bit estimates delivered by the BP decoder coincide with the correct a posteriori probabilities above the maximum a posteriori threshold. More generally, it is conjectured that the fundamental relationship between the maximum a posteriori probability (MAP) and the BP decoder which was observed for transmission over the binary erasure channel carries over to the general case. We finally demonstrate that in order for the design rate of an ensemble to approach the capacity under BP decoding the component codes have to be perfectly matched, a statement which is well known for the special case of transmission over the binary erasure channel.

Author-supplied keywords

  • Area theorem
  • Belief propagation (BP)
  • EXIT curve
  • Entropy
  • Maximum a posteriori
  • Maximum-likelihood
  • Maxwell construction
  • Phase transition
  • Threshold

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Cyril Méasson

  • Andrea Montanari

  • Thomas J. Richardson

  • Rüdiger Urbanke

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free